Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking.
نویسندگان
چکیده
Forward propulsion is a central task of walking that depends on the generation of appropriate anterior-posterior ground reaction forces (AP GRFs). The AP impulse (i.e., time integral of the AP GRF) generated by the paretic leg relative to the non-paretic leg is a quantitative measure of the paretic leg's contribution to forward propulsion and is variable across hemiparetic subjects. The purpose of this study was to investigate the underlying mechanisms of propulsion generation in hemiparetic walking by identifying the biomechanical predictors of AP impulses. Three-dimensional kinematics and GRFs were recorded from 51 hemiparetic and 21 age-matched control subjects walking at similar speeds on an instrumented treadmill. Hierarchical regression models were generated for each leg to predict the AP impulse from independent biomechanical variables. Leg extension was a significant predictor and positively related to the propulsive impulse in the paretic, non-paretic and control legs. Secondarily, the hip flexor moment impulse was negatively related to the propulsive impulse. Also, the relationship of paretic and non-paretic ankle moments with the propulsive impulse depended on the paretic step ratio, suggesting the plantar flexor contribution to the propulsive impulse depends on leg angle. These results suggest that increasing paretic leg extension will increase propulsion. Increasing paretic plantar flexor output and decreasing paretic hip flexor output could also increase paretic leg propulsion. While increased pre-swing hip flexor output has been suggested to compensate for decreased plantar flexor output, such output may further impair propulsion by the paretic leg if it occurs too soon in the gait cycle.
منابع مشابه
Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis.
OBJECTIVE To understand the relationship between step length asymmetry and hemiparetic walking performance. DESIGN Descriptive. SETTING Gait analysis laboratory. PARTICIPANTS Convenience sample of 49 subjects with chronic hemiparesis. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Subjects walked at their self-selected walking speed over both an instrumented mat and forceplates t...
متن کاملAnterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking.
BACKGROUND AND PURPOSE Walking after stroke is characterized by slow gait speed, poor endurance, reduced quality and adaptability of walking patterns, and an inability to coordinate the legs. Estimates based on mechanical work calculations have suggested that the paretic leg does 30% to 40% of the total mechanical work over the gait cycle, regardless of hemiparetic severity, but these work esti...
متن کاملPre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking.
Clinical studies of hemiparetic walking have shown pre-swing abnormalities in the paretic leg suggesting that paretic muscle contributions to important biomechanical walking subtasks are different than those of non-disabled individuals. Three-dimensional forward dynamics simulations of two representative hemiparetic subjects with different levels of walking function classified by self-selected ...
متن کاملRelationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis.
BACKGROUND Persons with post-stroke hemiparesis usually walk slowly and asymmetrically. Stroke severity and functional walking status are commonly predicted by post-stroke walking speed. The mechanisms that limit walking speed, and by extension functional walking status, need to be understood to improve post-stroke rehabilitation methods. METHODS Three-dimensional forward dynamics walking sim...
متن کاملForward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.
BACKGROUND A common measure of rehabilitation effectiveness post-stroke is self-selected walking speed, yet individuals may achieve the same speed using different coordination strategies. Asymmetry in the propulsion generated by each leg can provide insight into paretic leg coordination due to its relatively strong correlation with hemiparetic severity. Subjects walking at the same speed can ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gait & posture
دوره 32 4 شماره
صفحات -
تاریخ انتشار 2010